The nGEN Process

NGEN Data File

R
MIDI File

Instrument Blocks (I-Blocks)

The nGEN Quick Reference Card

The Csound Process

——

Csound Score
File

Sound File

Running nGen from the Command Line*:

(Version 2.1.1)

Csound
Orchestra File Switch Required Arguments Comments
-m none Output file will be a MIDI file (format 1).
-1 file name Make log of screen output and put it in “file name” (text file).
-t none Write verbose information about tempo changes to console.
-X file name Put macro expansions in “file name” (text file).
Example:

ngen -m -t -1 log.txt -x exp.txt exla.gen exla.mid

will run the program using input from “exla.gen” creating MIDI output in “exla.mid”, screen output will be logged in
“log.txt”, and macro expansion can be viewed in “exp.txt.” Tempo information will be written to the console.

*N.B. The command line version of nGen is available for DOS/Windows, Linux, and Mac OS X.

I-Blocks are the guts of the nGen input file and create a Csound score-file instrument block (currently MIDI output can only have one I-block). I-blocks contain a header and a body.

I-Block Header

Each i-block must contain a header in the following format:

i<number> = <# of p-fields> <start time> <X>

{

...p-fileld data...

}

N.B. If the instrument number is negative, the entire i-block will

be ignored. (This can be useful for debugging, etc.)

always convert to MIDI.

If you are going to be creating MIDI files, only 4 p-fields apply:
p2: always the start time of the event (as usual).

p3: always the duration of the event (as usual).

p4: For MIDI this should always be amplitude (0-32767). The value in p4 will be scaled to the range 0-127 automatically. If you hap-
pen to use 0-127 it will still be scaled, so stick with 0-32767 always. While this may seem strange, it exists so that Csound files will

p5: For MIDI this should always be pitch. Again these values will be converted to MIDI code automatically. For example, C4 (stored
internally by the program as 60), will convert to 48.
Important: All p-fields above p5 will be ignored when creating MIDI files.

MIDI

where: <number> = the instrument number, <# of p-fields> = the number of p-fields used in the instrument. This is identical to Csound where P1 is the instrument number. The highest P# used in your
instrument will be the number of p-fields in your i-block. <start time> = the global start time for the instrument (in beats). <X> = the duration of the instrument. If X is a positive real number, it denotes
the number of beats for the duration of the i-block’s material. If X is a negative integer, it denotes the number of events that will be calculated.

IMPORTANT: If the data in any p-field is less than that specified in the instrument header’s duration (total time or number of events), the last value in the p-field will be repeated until the end of the note
list. If this is not desired see the <> delimiters. If you have included too much data in a particular p-field for the duration of the i-block, it will be truncated (a warning message will be printed when this

occurs).

I-Block Body

Each i-block must also contain a body, after the header; the body is enclosed in {}s. There are only two obligatory p-fields in the i-block’s body: P2 (start times) and P3 (durations). The current limit on the
number of p-fields that can be contained within a single i-block is 256 (but this may be significantly more than Csound can realistically accept). The only limitation on the size of an expanded i-block or the
number of i-blocks in a file is machine specific memory.

nGen’s p3 Codes: (p3 specifies duration; the “codes” allow for several special duration possibilites)

p3 Code Function

0-199.999 When p3 is in this range, the duration of the event is multiplied by the given scaling factor (e.g., 1 leaves all durations as continuing until the start of the next event —i.e., 100% scal-
ing, .5 will make all durations last 50% of the time between both events.) To make events legato, consider setting P3 to 1.05...

200-299.999 Adds a constant amount, x - 200, to the temporal interval (default duration). For example, if x is 200.1, the duration will be the temporal interval between two events plus .1.

300-399.999 Subtracts a constant amount, x - 300, from the temporal interval (default duration). For example, if x is 300.1, the duration will be the temporal interval between two events minus
.1. If the value negates the length of the temporal interval, the event turns into a rest (in this case a warning message is printed).

400+ / 1000+ Force x - 400 to be the literal value of the duration (in beats). / Force x - 1000 to be the literal value of the duration (in seconds).

Dynamic Data Functions (DDFs)

Dynamic data functions (DDFs), such as mo, will create a stream of changing values over a specified time or number of events, based on a particular algorithm. The
data will be generated for a the period found in the “time” field (first field in all DDFs) — negative numbers will create a specific number of events of generated data,

Linear Distribution Flags

while positive number will create a stream of data lasting for a specific number of beats (similar to the i-block header’s duration field).
Flag Distribution
DDF Description Example
e, 1, f | exponential, logarithmic, flat (lin)
ex Extract previous p-fields; these can optionally be included in an equation (left to right precedence). ex(T, 1. [2000 - p4 * .01]) — -
s,C sine rise (270-360), sine fall
mo Moves between two values (v1 and v2) or two ranges (vla to vlb and v2a to v2b). Additionally, the mo (‘.10 1.E 1 [5 101)
type of interpolation - linear, exponential, or logarithmic, can be specified and there can be several time % d}St viv2 .. Vn n: 1=flat, 2=exp, .5=log, 3=steep
“moves” nested in the same time period. ORtime % dist [rangel] [range2] ... exp., .25=steep log
ms A combination of the mo (move) and se (sets) commands that allows for the interpolation between ms(T,1. L [1 2 11][10 20 30]) . . .
two “sets” of values. time % dist [set1] [set2] . Random Distribution Flags
se/se2 | Aspecial case of the random (ra) command. It randomly chooses a succession of elements taken no se (10 .9 [c4, cs3, fs4, g5] Flag Distribution
from a “set” of listed materials (this is similar to using ra to specify equal weighted distributions of -1 [df2/bEff£2])
selected values). se2 will allow fused data as sets (i.e., “chords”). time % [setl] % [set2] ... f flat (normal)
ra Used to create a stream of random values over the specified number of beats or events. Each value ra(T, .5 [g -1 -2] .5 [x 1 2]) 1 low (near low anchor)
(or range of values) must be preceded by a percentage value specifying the weighting of that value time % vl To V2 - -
(or range) and all percentage values must sum to 1. OR time % dist [rangel] % dist [range2] h high (near high anchor)
Gaussian (bell)
™w The rw command is useful for creating sequences of random numbers where each successive number | rw (T, 1. [0 32767], .25 16000) 8
lies within a constrained distance from the previous (similar to 1/f noise). time % [range] ~winsz % start val X bilateral exponential (center)
ho The ho command is used to “hold” or continue the same value for a specified period. ho (45.25, 54.2) b beta (near sides)
time value
t triangular (center)
Commands
Command Description Command Description Command Description Command Description
#define Define a macro. <> Put ... in data queue. op, opx Octave.pch in/out filter. te() Tempo function (static or dynamic).
#undef Undefine a macro. db Decibel in/out filter. pf(X) P-field scaling factor of X (1=same). tr Transposition ratio output filter.
#include Read in a file. dv(X) Random deviation func. (p-field) rd(X) Random deviation function (global). XX Scratch p-field output filter (no output).
$ Call a macro. in Integer output filter. re[X] Floating-point output filter. /,x Repeat last datum.
T Grab time/events from header. no, nox Note input filter. th Reciprocal duration code input filter. " Data separators (optional).
> Output rest of line to file. od Octave.decimal out filter. rs(X) Reset random number seed. z Use last generated value.

Copyright © 2000-2015 by Mikel Kuehn, All Rights Reserved.

These lines (preceded w/
>) will be copied directly
to the score (output) file
and will be stripped of
the

_n

>0,

T~

This is a macro named
“X” that contains a chord
(the macro definition is
contained within the #s).

This line specifies the
start of the instrument
block (i.e., instrument 1
starts at beat 0 and last
for 15 beats). A negative
number in the last pa-
rameter specifies the #
of events to generate.

Macros can be accessed by
preceding their name with
Qs

The hz output filter will
convert internal values
(48 = C4) to Hertz
values. (Here the no
input filter has been used
to convert note names-
octave numbers into the
internal values.)

This line is stripped
of the > and sent to
the Csound score-file.
It controls the global
reverb instrument.

/*

An example nGen file.

Sample nGen Input File

This must be saved as ASCII text. You can create this file using a

simple text-editor (NotePad, Vi, Emacs, TextWrangler, etc.).

*/

>f1 0 8192 10 1
>f2 0 1025
>f10 0 4097 5

-5 4 1025 .01

.001 197 1 3997 .001

>f11 0 4097 7 0 100 1 3897 1 100 0

>f12 0 4097 5

/*

#define X #ds2:e3:g#

te

}<

—» >i2 0 20

Orches
ampl
Herz
C:M

Spat
enve
amou

(60)

.001 2048 1 2049 .001
tra Parameters:
itude (0-32767)

ratio

ial position 0-1
lope function #
nt of wet signal (reverb) */

;a macro

;"quarter-note”

— i1 =90 15 {

;rhythms

p2 rh

p3 4
p4 1000

p6 se(l

p7(re2)
p8(in)
p9 .1

16x4/4/12x2/24x2/4/12x2/24%2
24//12/24//20%5/4
16/8./10./20//4/20///10
24///8/8./16/2

;each duration is 4x its “intervalic duration”

0 ;amp

O

60b.p.m. (the

ef5/r/d6:f/rx4/en5/rx5/df6
c2/r/r/c2:b:af3/r//bfd:a5/r/e3:g/ef2/r

default)

;measure
;measure
;measure
;measure

R

;sine wave function
;index envelope
;envelope (sharp attack)
7 (quick ramp)

i (quick ramp)

d3:csd:gf5:£6/r//$X/x///fsl:fn2/b2:gs3/r

c5/r/d2:cs6/r//bf4:a5/r
51. (1, 2, 1.5, 3, 1.414]
ra(l5 .5 .5 .5 [b 0 1])

10 ;envelope function #
;reverb amount

;spatial placement (1 = right)

Comments can use the /**/
style for multiple lines or the
semicolen “;” for single ine

comments.

p2 uses the rh input mode to
specify reciprocal duration
codes (thythms). The /s are
used to separate values but are
optional. The data could have
been listed in one huge chunk
but, instead, I have separated
each measure by a line and
have been careful to comment.
The xs are used to repeat the
previous value (slashes may
also occur more than once
denoting a repeat — as in the
SCORE input language). (This
example was taken from the
piano part from Mikel Kuehn's
composition Between the Lynes
©1994.)

;ml
sm2
;m3
;md

The no input filter allows for
note-name octave number
input. Rests are indicated by
R and will constitute a period
of silence attached to the cor-
responding start times in p2.
Formatting is similar to p2.

pb6 is the carrier to modulator ratio.
Here we use SE to list some “set”
values to choose from at random.

<
<«

The current instrument
block must end with
“}”. There may be many
i-blocks in a single file.

nGen Output File (Csound Score File)

£1 0 8192 10 1
£2 0 1025 -5 4 1025
£10 0 4097 5

.01

.001 197 1 3997

.001

£11 0 4097 7 0 100 1 3897 1 100 0

£12 0 4097 5 .001 2048 1
;I-block #1 (il):

i1 0.000 1.000 10000.
i1 0.500 1.000 10000.
i1 0.500 1.000 10000.
i1 2.667 0.667 10000.
i1 4.833 0.667 10000.
i1 5.000 0.667 10000.
i1 5.667 0.667 10000.
i1 5.667 0.667 10000.
i1 5.667 0.667 10000.
i1 6.200 0.800 10000.
i1 6.200 0.800 10000.
i1 6.600 0.800 10000.
i1 6.600 0.800 10000.
i1 6.800 0.800 10000.
i1 8.000 1.000 10000.
i1 8.000 1.000 10000.
i1 8.000 1.000 10000.
i1 8.000 1.000 10000.
i1 9.600 0.800 10000.
i1 9.600 0.800 10000.
i1 9.600 0.800 10000.
i1 11.200 0.800 10000.
i1 11.200 0.800 10000.
i1 11.400 0.800 10000.
i1 11.400 0.800 10000.
i1 12.000 0.667 10000.
i1 12.333 0.667 10000.
i1 12.333 0.667 10000.
i1 13.750 1.000 10000.
i1 13.750 1.000 10000.

;I-block #2 (il):
i2 0 20
e

204

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

9 .00

622

117
139
65
110
6

6
12
20
46
88
16
19
7
14
27
73
139
7
16
19
4

8
12
20
52
7
110
46
88

1

.25397
.65894
.91272
.25519
.73059
5.40639
5.40639
3.47083
7.65236
6.16382
0.00000
4.81377
5.99771
7.78175
6.83240
7.18265
9.98883
6.91272
7.78175
4.81377
5.99771
6.24930
7.30706
3.47083
7.65236
3.25116
3.41620
8.73059
6.16382
0.00000

4
6
9
8

;sine wave function
;index envelope
;envelope (sharp attack)
i (quick ramp)

; (quick ramp)

3.000 0.50 10
1.500 0.44 10
1.000 0.50 10
1.000 0.00 10
3.000 0.02 10
3.000 0.08 10
3.000 0.95 10
1.500 0.50 10
1.500 0.50 10
1.000 0.50 10
3.000 0.50 10
1.000 0.50 10
1.414 0.50 10
1.000 0.05 10
3.000 0.50 10
1.414 0.00 10
3.000 0.37 10
1.500 0.20 10
3.000 0.50 10
1.414 0.50 10
3.000 0.13 10
2.000 0.89 10
1.000 0.50 10
1.000 0.50 10
1.414 0.96 10
3.000 0.01 10
1.500 1.00 10
2.000 0.17 10
1.500 0.70 10
1.414 0.50 10

D000 O0000000O000O00O0OO0O0O0O0O0O0OO0O0O0 OO O

.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100

.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100

Piano

In p7 the RE output filter is used to
send floating point numbers to the
output file (the “2” is a field width
specifier). The RA command is used
here to generate random spatial val-
ues: 50% of the time a .5 (middle) and
50% of the time a random number
between 0 (left) and 1 (right). The “b”
specifies a beta distribution.

p1, P2, p3,p4, p5, p6, p7, p8, p9 I

MIDI File Output (imported to Sibelius)

J=60

.

i
T

= =

PR

4

—

CQ;’kD

B

P

R

AL

Al

X

)

Ex

N

e

Q@Ft

N

CQ;"&D

ol

SN

NY

1

e

For More Information:
See the nGEN HTML Manual
(available online)

The nGEN Home Page
http:/ /mikelkuehn.com/index.php/ng

Mikel Kuehn, Author
mikelkuehn.com

Download nGen for FREE!

Copyright © 2000-2015 by Mikel Kuehn, All Rights Reserved.

